
CSECS 2011, pp. 000 - 000

 The 7 Annual International Conference on
Computer Science and Education in Computer Science,

July 06-10 2011, Sofia, Bulgaria

FACILITATING QUALITY ASSURANCE THROUGH A

SOURCE CODE METRICS FRAMEWORK

Nikolay GROZEV, Neli MANEVA, Delyan LILOV

Abstract: The paper describes how a source code metrics framework

can support quality assurance. The framework, comprising of a core

framework and its extensions, is briefly presented. The described views

for different groups of software practitioners show how the proposed

framework functionalities can be integrated into their everyday

professional workflows. Last, the preliminary results of using a

framework prototype are mentioned thus proving the feasibility of our

approach.

Keywords: Quality assurance, source code analysis, software metrics,

framework.

ACM Classification Keywords: D.2 Software Engineering

Introduction

Optimizing software engineering activities has always been a top priority

for researchers and practitioners in the field, especially in the

circumstances of economy recession. Thus we decided to extend

previous research on source code metrics, focusing our attention on

quality assurance through static analysis. This activity is recognized as

2 Nikolay Grozev, Neli Maneva, Delyan Lilov

Facilitating quality assurance through a source code metrics framework

crucial and quite effective for improving the economical parameters of

the software development during the whole software life cycle.

Searching for some science-based solutions, we decided to use the so-

called CCC approach, which should be:

 Constant – to apply a systematic rather than ad-hoc approach,

following a consistent and long-term strategy;

 Continuous – to start with some procedural regulations and their

use for a few selected activities and only after their successful

adoption to move to other ones. This approach can be

combined with an incrementally developed framework,

comprising a basic set of tools, which later can be enriched with

additional functionality;

 Correct – based on some validated techniques and best

practices – e.g. some of the suggested by Jones [Jones, 2010].

This approach is quite suitable for optimizing the so-called “umbrella”

activity – quality assurance, comprising a number of different in scope

and complexity sub-activities: quality analysis, measurement, control,

etc. For example, we can use the results from static program analysis

not only for checking source code correctness, but also for achieving

other goals as improvement of source code understandability,

maintainability, etc.

The paper is organized as follows: The first section describes briefly the

design and the structure of the core framework for static source code

analysis. The successive several sections are devoted to both technical

and conceptual extensions of the core framework, aimed at facilitating its

incorporation into the daily life of the software professionals. Section

“Views to the framework” describes how the framework can facilitate the

different roles in the software lifecycle. Section “Prototype status and its

preliminary validation” summarizes the results of experimental use of a

prototype of the framework, thus proving the feasibility and usefulness of

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 3

our approach. In “Conclusion and future work” some ideas for further

research and development are shared.

Core framework – a brief overview

In a previous paper [Maneva, 2010] a detailed study of the different

approaches to analyzing source code through metrics has been

presented, together with a flexible but abstract framework, designed to

overcome the majority of the identified in the study problems. In this

paper we shall call this abstract framework – core framework. The

presented research herein extends the previous abstract framework by

adding and motivating features that would allow it to incorporate in the

workflow of various software professionals. In this section the previous

framework is briefly presented thus making the paper reading easier.

Then again the reader is advised to get acquainted with the previous

paper [Maneva, 2010] for more details.

The main idea of the core framework is to provide a general template for

automatic extraction of useful knowledge derived from the values of a

predefined set of metrics called the base set. The core framework can

be thought of as a general source code quality evaluation scheme, which

can be tuned through user specified logic. This user logic is “hooked” into

the quality evaluation scheme in a predefined way so as to influence the

eventual results in accordance with some contextual information.

The core framework comprises a number of separate modules,

interacting with each other, which can be modeled as functions. The

different types of functions that constitute the core framework are:

 Metric functions – their purpose is to extract the values of the

metrics. For each metric from the base set of metrics there is a

single “hardcoded” metric function in the core framework. Each

metric function takes as input a number of source code artifacts

and uses them to compute the value of the metric.

4 Nikolay Grozev, Neli Maneva, Delyan Lilov

Facilitating quality assurance through a source code metrics framework

 Preprocessor functions – their purpose is to prepare the

artifacts used by the metric functions. For each of the metric

functions in the core framework there must be a preprocessor

function.

 Evaluation functions – their purpose is to combine the values of

the metrics from the base set of metrics into a meaningful

evaluation of the code quality.

Figure 1 Evaluation scheme

Figure 1 depicts the whole scheme. First the source code is transformed

into a set of artifacts – control flow graphs, dependency graphs,

inheritance trees, etc. Describing this extraction is beyond the scope of

this paper. After that the preprocessor functions are used to prepare

these artifacts for the metric functions. This preparation usually consists

of cleaning the artifacts from irrelevant data. As an example the

preprocessor function for the Depth of Inheritance Tree (DIT) metric

would normally remove from the inheritance tree the nodes that are

irrelevant to the class being evaluated. After the artifacts are

preprocessed by the preprocessor functions, they are passed to the

metric functions which compute the actual values of the metrics from the

base set. After that the evaluation functions are used to produce useful

evaluations of the code.

As mentioned earlier, the core framework accommodates extension

points, where user specified logic can be “hooked”. These extension

source code

evaluation

. . .

preprocessor

function

preprocessor

function

preprocessor

function

metric

function

metric

function
evaluation

function

evaluation

function

evaluation

function

metric

function

source code

evaluation

source code

evaluation

source code

module
(class, method,

package etc.)

metric function

parameters
(filtered graphs, hierarchies etc.)

metric function

parameters
(filtered graphs, hierarchies etc.)

. . .

metrics values
(cyclomatic complexity,

LOC, Halstead volume etc.)

metric function

parameters
(filtered graphs, hierarchies etc.)

artifacts
(control flow graphs,

inheritance hierarchy etc.)

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 5

points are the preprocessor and the evaluation functions. By specifying

context dependent preprocessor functions a user can achieve metrics

values with minimal “noise” which can be used as a basis for further

analysis.

The purpose of the evaluation functions is to encapsulate specific logic

about how to combine the metrics values. For example, such knowledge

can be an identified design anti-pattern (a.k.a. “bad smell”). The

approaches from [Munro, 2005] and [Lanza, 2006] could be used as a

basis for such evaluation functions. Thus we consider that our core

framework can fully accommodate these anti-pattern recognition

strategies. In fact we believe that the usefulness of these strategies

could be augmented by properly designed preprocessor functions. They

can result in metrics values with less “noise” being used by the

evaluation functions to do the actual recognition of the “bad smells”.

Evaluation functions can also be used to produce new numerical

evaluations of the quality of the source code - e.g. an evaluation of

methods maintainability in the range 0 - 10.

Extended framework – general description

The proposed core framework provides only the basic technical structure

meeting the stated requirements. It is essential to devise ways to

incorporate the framework into the daily work of almost everyone

involved in the activities during the whole software lifecycle. This is

important in order to improve everybody’s awareness of the estimated

source code quality degree and needs for improvement.

6 Nikolay Grozev, Neli Maneva, Delyan Lilov

Facilitating quality assurance through a source code metrics framework

To do so a lot of both technical and non-technical problems regarding the

user - framework interaction need to be addressed. Some of these may

seem as implementation specific details. However, in our opinion the

difficult interaction of the users with some existing tools is one of the

main reasons for them not being widely adopted. Thus the usability of

the environment in which the technical framework is provided is central in

our study.

Figure 2 Core framework and its extensions

In order to improve the overall usability of the core framework and to

allow users to focus on quality control, we propose a number of

extensions of the core framework augmenting its original functionality

(see Figure 2). Unlike the core framework designed after a mostly

thoughtful analysis, the extensions originate from a practical one. They

have been “inspired” by our experience trying to incorporate a prototype

of the core framework in the work of our fellow software engineers.

source code

evaluation

. . .

preprocessor

function

preprocessor

function

preprocessor

function

metric

function

metric

function

evaluation

function

evaluation

function

evaluation

function

metric

function

source code

evaluation

source code

evaluation

source code

module
(class, method,

package etc.)

metric function

parameters
(filtered graphs, hierarchies etc.)

metric function

parameters
(filtered graphs, hierarchies etc.)

. . .

metrics values
(cyclomatic complexity,

LOC, Halstead volume etc.)

metric function

parameters
(filtered graphs, hierarchies etc.)

artifacts
(control flow graphs,

inheritance hierarchy etc.)

Core

framework

web

interface

statistical

charts

visualization

of historical

data

explanations

of metrics values

interpretations

explanations

of the code

evaluations

IDE

integration

treemap

visualization

integration with

versioning

systems

automatic

extraction of

context

information

user

specified

context

information

views to the

framework

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 7

Next follows the description of different technical and conceptual

extensions.

Extended framework - Interface

In order to be useful throughout the whole software lifecycle the

framework should integrate well with the users’ usual workflows and

tools. The roles of the participants in a software process vary – from

software developers to managing staff. Thus the framework should be

incorporated into integrated development environments (IDE) and project

management systems.

The non technical staff should be provided with a web interface. The

interface needs to be well integrated with the most popular web based

project management and issue tracking systems. This would provide the

management with the ability to easily correlate source code

maintainability information with other managerial information. The

technical staff has to be provided with IDE integration so as to access

the source code and the analysis results from the same place.

Extended framework – metrics values visualizations

In the last decade there have been some studies about the combined

usage of metrics and visualization techniques (statistical charts,

treemaps, spider charts, polymetric views etc.) to spot source code

modules with poor quality and maintainability [Lanza, 2006] and [Diehl,

2007]. Our observations show that these techniques can increase a lot

the benefits from the framework. Thus both the IDE and the web

interface should employ such techniques.

More specifically, we found that various techniques for visualization of

software evolution [Diehl, 2007] can be beneficial for the framework

users. Visualizing historical trends of metrics values and code

assessments is crucial for the continuous monitoring of source code

8 Nikolay Grozev, Neli Maneva, Delyan Lilov

Facilitating quality assurance through a source code metrics framework

maintainability and provides a way for early detection of problems (i.e. a

junior developer is committing code that is not reviewed, etc.). Natural

sources of historical analysis information are the versioning systems and

the framework should be integrated with the most popular ones like SVN

[SVN, 2011], and CVS [CVS, 2011]. The historical analysis information

should be accessible at least through the web interface, because it

should be available to the managing staff. IDE integration may also be

useful for senior engineering staff.

Extended framework – explanation system

Most software engineers find it difficult to interpret the values of a set of

metrics [Maneva, 2010]. This problem can be partially solved by

providing interactive information on the metrics values from the base set.

This information should explain the interpretations of the metrics values.

Usually this is easy to implement by “hard coding” the explanations for

distinct groups of values for each metric. This approach is used by some

of the existing metrics tools.

Besides the metrics values from the base set, the aggregated knowledge

(resulting from the evaluation functions) sometimes also needs to be

explained. The primary reason is that the user may disagree with the

produced code assessment. In this case the user may need explanations

about the reasons the framework gave that assessment in order to

decide how to proceed. The presence of such explanations is essential

to the usability of the framework since it is often the only way to

distinguish the so-called false positives and to take corrective actions.

Besides such explanations may have certain educational effect

especially on the less experienced software developers.

Thus an explanation system for the values of the base metrics and the

extracted knowledge should be created “on top” of the core framework.

Explanation systems are a subject of the Expert system field. Even

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 9

though there are some achievements in this area which seem plausible

for our goals, automatically explaining the extracted knowledge from the

framework is not a straightforward task. This is because the evaluation

functions represent user defined logic and only a few assumptions about

their properties can be made. Our preliminary research in the area

shows that by using domain specific knowledge it is possible to create a

usable explanation system suitable for our purposes.

Extended framework - settings

The proposed core framework represents solely a source code

evaluation scheme. That is the framework is not usable without its user

specified preprocessor and evaluation functions. Defining the correct

functions however may be a time consuming and tedious task requiring

significant expert knowledge.

The solution to this problem comes from the fact that the suitable

functions depend on the context in which they are used. Thus a set of

both preprocessor and evaluation functions can be predefined for often

recurring contexts. This gives the users an easier way to tune the

framework by specifying the context information about what is being

evaluated. For example a user may specify that a group of classes

represent GUI components written with a popular GUI library. Based on

this information the framework should automatically set the proper

preprocessor function for the metrics used to evaluate these classes.

Also evaluation functions for different assessments of these classes

should be set automatically.

The idea of defining a set of functions for recurring contexts can be

further extended. The user should be able to specify the context in a

much wider sense than specifying it for separate source code modules

(e.g. classes, methods etc.). For example a user may specify that a

given application represents a web system, created with popular

10 Nikolay Grozev, Neli Maneva, Delyan Lilov

Facilitating quality assurance through a source code metrics framework

technologies (e.g. ASP, JSF, Hibernate, etc.) and the application is

meant to be a content management system (CMS). Based on expert

knowledge about the specified technologies and application domains it is

then possible to infer how the different source code modules should be

measured and evaluated. Similar approach has been used by some

static analysis tools. Once again the algorithms for such automatic

extraction of settings (preprocessor and evaluation functions) are not

straightforward and require considerable amount of expert knowledge.

However our study showed that these algorithms can dramatically

reduce the need for user input and thus improve substantially the

usability.

The need for user input can be reduced even more by applying

algorithms for automatic context detection. These algorithms would

typically exploit knowledge about the used binary files (e.g. dll or jar files)

and the “import” statements in the source files to infer which technologies

are used by the code. Other techniques for context recognition may use

heuristics about naming conventions and the physical or logical structure

of the source files typical for some design approaches and technical

frameworks. The contextual knowledge extracted by these algorithms

can be used to automatically define framework settings without any user

input. This contextual knowledge however may sometimes be partially

incorrect or incomplete and thus may need a user correction.

In order to minimize the needed user input we propose a stepwise

procedure for creating the settings of the framework. First the user

should review the automatically extracted knowledge about the system

being analyzed, correct the mistakes (if any) and optionally input

additional context information. Then this information is used to create the

initial settings of the framework. After that the framework should be in a

usable state but still may need further tuning. The user can provide this

tuning by reviewing the framework analysis results extracted with the

initial settings. Whenever the user disagrees with the assessment of a

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 11

code module he or she may consult the explanation system and make a

decision whether to correct the settings of the framework for this module

by specifying additional context information for it.

Of course a user should not be banned from changing the settings

directly, but we believe that the procedure described above represents

the easiest, quickest and least error prone way to defining the framework

settings.

Views to the framework

The described above features and workflows certainly can augment

substantially the functionality of the framework. However we did not

specify which members of a software development team should access

these functionalities and how using these functionalities can be

integrated into their professional workflow. We believe that predefining

the ways the different groups of users interact with the framework is

important to its usability because it lessens the possibility of misuse.

Thus we consider that the framework should facilitate the different roles

in the software lifecycle by providing different user account capabilities.

We call the capabilities of a group of user accounts a view to the

framework. Typically a view to the framework defines the way a user

accesses the system (through an IDE or web) and the accessible

functionalities.

An organization using the framework may define its own views to the

framework in accordance with its internal structure, regulations and

processes by defining the corresponding groups of user privileges. We

propose several different views considering the main roles in the

development process:

View for source code developers

This view is aimed at the software engineers creating, testing and

maintaining the actual source code and thus allows access through an

12 Nikolay Grozev, Neli Maneva, Delyan Lilov

Facilitating quality assurance through a source code metrics framework

IDE only. It should provide real-time access to the information about the

code maintainability while writing, testing or debugging the code. Thus

this view includes access to metrics values, aggregated knowledge

(resulting from the evaluation functions) and all available visualizations.

The represented information should be easily tracked to the original

source code. The view also includes access to the explanation system

which should give the developer explanations about the analysis results

and ideas for improvements. This way the explanation system is

expected to have certain educational effect especially on the less

experienced engineers.

This view is also very useful when testing, since it allows easily spotting

the modules posing potential maintainability problems. Such modules

should be tested with many regression tests, so that they can be

changed in future with less probability of undiscovered regression

problems.

View for senior software engineering staff

This view gives access to all features of the framework. It should provide

access to the analysis results in the same way as in the previous view.

In our opinion one of the main threats for the source code quality is the

work of inexperienced developers, or developers who do not understand

well the design and architecture of the software being developed or

maintained. Thus this view should give access to high-level and historical

information to enable the continuous monitoring and control of the

developers’ work. Both web access and IDE access are allowed. This is

the only view that gives direct access to the settings of the framework

since they require high technical expertise.

View for managerial staff

This view allows access only to the web interface. It should provide the

ability to monitor the quality of the code and how it changes during the

development so as to facilitate certain managerial decisions. Thus only

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 13

summarizing visualizations and statistical charts showing aggregated

information are accessible. Historical information about the state of the

code is also provided so as to monitor the quality status over time.

Framework prototype and its preliminary validation

As mentioned, we have created an initial prototype of the core framework

for experimental purposes. Based on our attempts to incorporate it into

the work of a team of fellow practitioners some extensions have been

defined. Each of them is justified by a need that we have identified when

considering the difficulties reported by the team. For example, the need

for an explanation system was identified after team members complained

about not understanding the reasons for some code evaluations.

Besides a prototype of the core framework we have also implemented

prototypes of a few of the described extensions, namely: Eclipse IDE

integration, statistical charts, treemap visualization and tables of

interpreted metrics values. Currently the framework prototype can be

tuned only by a limited amount of context information that is manually

input by the users. No explanation engine, historical information and

support for views have been provided yet. Hence the practical benefits of

these have not been validated yet.

The feedback for the implemented visualization techniques is generally

positive. The adopting team found a great benefit of the close integration

of the visualizations within the IDE, which allows easy navigation

between them and the source code. Senior team members have

reported that the visualizations saved a lot of time when conducting code

reviews, because they can guide the reviewer to the code modules

posing eventual maintainability threats.

The negative feedbacks were mostly related to the lack of explanations

of the code evaluations and the absence of easy ways to tune

contextually the framework. Actually the team could not manage to

14 Nikolay Grozev, Neli Maneva, Delyan Lilov

Facilitating quality assurance through a source code metrics framework

create the needed context settings itself and thus experienced some

problems with “false positives”. Since the framework was accessible only

through an IDE, it was not possible for members of the non-technical

staff to test it. We believe that the proposed and not yet prototyped

extensions will help to overcome these issues.

Conclusion and future work

In this paper a framework, supporting quality assurance is presented. We

hope that such framework will meet the requirements for efficient, tool-

supported and user-friendly performance of this essential software

activity.

Our ideas for further research and development are in the following

directions:

 To implement in a prototype all of the proposed in this study

core framework extensions and to examine them;

 To study more source code metrics so as to decide which of

them can be added to the base set of metrics.

Acknowledgements

This work has been partially supported by the Bulgarian National

Science Research Fund (project ДМУ02/18 / 18.12.2009).

Bibliography

[CVS, 2011] CVS - http://savannah.nongnu.org/projects/cvs, May 31, 2011.

[Diehl, 2007] S. Diehl. Software Visualization. Berlin: Springer Verlag, 2007.

[Jones, 2010] C. Jones. Software Engineering Best Practices, Mc Grow Hill,

2010.

[Lanza, 2006] M. Lanza, R. Marinescu. Object-Oriented Metrics in Practice. First

edition, Berlin: Springer Verlag, 2006.

http://savannah.nongnu.org/projects/cvs

CSECS 2011, July 7-11 2011, Sofia, Bulgaria 15

[Maneva, 2010] N. Maneva, N. Grozev, and D. Lilov. A Framework for Source

Code metrics. Proc. of the International Conference "CompSysTech’2010",

Sofia, Bulgaria, pp.113-118.

[Munro, 2005] M. J. Munro, "Product Metrics for Automatic Identification of “Bad

Smell” Design Problems in Java Source-Code", 11th IEEE International

Software Metrics Symposium, 2005

[SVN, 2011] SVN - http://subversion.tigris.org/, last visited May 31, 2011.

Authors' Information

Nikolay GROZEV,

nikolay.grozev@gmail.com

Major Fields of Scientific Research: Software Engineering,
Software Architecture, Quality Assurance, Software Measurement

Neli MANEVA, Assoc. Prof. PhD, Institute of Mathematics and
Informatics, BAS, “Acad. G. Bonchev” Str. Bl. 8, Sofia 1113,

e-mail: neman@gbg.bg,

Major Fields of Scientific Research: Software Engineering, Quality
Assurance, Software Measurement

Delyan LILOV, Musala Soft Ltd. 36 Dragan Tsankov blvd. Sofia,
Bulgaria +359 2 969 58 21,

e-mail: delyan.lilov@musala.com

Major Fields of Scientific Research: Project management, Software
Engineering

Your photo here:
Height: 2,58 cm
Width: 1,84 cm

Your photo here:
Height: 2,58 cm
Width: 1,84 cm

Your photo here:
Height: 2,58 cm
Width: 1,84 cm

http://subversion.tigris.org/

